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BACKGROUND: Perfluoroalkyl substances (PFASs) are widespread persistent organic compounds that have been suggested to affect neurodevelopment.
OBJECTIVE:We aimed to evaluate whether prenatal exposure to PFASs is associated with IQ in children.

METHODS:We studied 1,592 pregnancies enrolled in the Danish National Birth Cohort (DNBC) during 1996–2002. Sixteen PFASs were measured in
maternal plasma collected in early gestation. Child IQ was assessed at 5 y of age using the Wechsler Primary and Preschool Scales of Intelligence–
Revised (WPPSI-R) administered by trained psychologists. Using multivariable linear regression models, we estimated the differences in child IQ
scores according to PFAS concentration [per natural-log (ng/mL) unit increase or values categorized in quartiles].

RESULTS: Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were detected in all samples, and five additional PFASs were quanti-
fied in >80% of the samples. Overall, we found no strong associations between a natural-log unit increase in each of the seven PFASs we evaluated
and child IQ scores. A few positive and negative associations were found in the sex-stratified PFAS quartile analyses, but the patterns were
inconsistent.
CONCLUSION: Overall, we did not find consistent evidence to suggest prenatal exposure to PFASs to be associated with child IQ scores at 5 y of age
in the DNBC. Some of the sex-specific observations warrant further investigation. Additional studies should examine offspring IQ at older ages and
assess other functional cognitive and neuropsychiatric measures in addition to intelligence. Postnatal exposures to PFASs and mixture effects for
PFASs and PFASs with other environmental pollutants should also be considered in future research. https://doi.org/10.1289/EHP2754

Introduction
Perfluoroalkyl substances (PFASs) are a group of synthetic
fluorine-containing compounds that have been widely used in
commercial and manufacturing products since the 1950s for the
treatment of paper, clothing, carpets, food packing material, and
kitchenware (Houde et al. 2006). PFASs are extremely resistant
to biotransformation and environmental degradation (Houde et al.
2006). Several PFASs have been spread widely throughout the
environment and are detectable in humans worldwide (Houde
et al. 2006; Lau et al. 2007). Perfluorooctane sulfonate (PFOS)
and perfluorooctanoic acid (PFOA) have been the two most fre-
quently used PFASs and have estimated biological half-lives in
humans between 3 and 5 y (Olsen et al. 2007). PFOS and PFOA
have been phased out from production in the United States and in
some other countries since 2000, but these compounds remain

widely detectable (Bjerregaard-Olesen et al. 2016; Chu et al.
2016; Kato et al. 2011; Nøst et al. 2014). Human exposure to
other short-chain and to some long-chain PFAS compounds has
been found to be on the increase (Glynn et al. 2012). In addition,
some new fluorinated compounds used as replacements for
PFASs have also recently been detected in the biota (Chu et al.
2016; Gebbink et al. 2017; Sun et al. 2016).

PFASs cross the placental barrier and expose the fetus during
the vulnerable period of development (Fei et al. 2007). Numerous
studies have suggested that PFASs may interfere with thyroid hor-
mone homeostasis in pregnant women: for example, a recent sys-
tematic review showed that three PFASs were positively correlated
with thyroid stimulating hormone and negatively correlated with
free thyroxine (Ballesteros et al. 2017; Wang et al. 2013, 2014;
Webster et al. 2014). Thyroid hormones transferred from themother
to the embryo and fetus might be critical for normal brain develop-
ment (Lazarus 1999). Severe thyroid hormone deficiency during
gestation can cause cretinism and cognitive and/or mental disorders
(Hong and Paneth 2008; Modesto et al. 2015; Oppenheimer and
Schwartz 1997). Subclinical maternal hypothyroxinemia in preg-
nancy has also been linked to adverse neurodevelopmental out-
comes (Andersen et al. 2014, 2017). Previous research has indicated
that even a slight reduction in the amount of circulating free thyroid
hormone levels inmothers (∼ 2:6 parts per trillion) might be associ-
atedwith a loss of 4 to 7 IQ points in children (Haddow et al. 1999).

To date, only two epidemiologic studies have evaluated the
associations between prenatal PFAS exposure and child IQ. The
C8 Health Study examined 320 children between 6 and 12 y of age
from a community highly exposed to PFOA for decades via conta-
minated drinking water and unexpectedly found that geospatially
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estimated (not measured) in utero PFOA levels were associated
with higher full-scale IQ (Stein et al. 2013). The C8 study did not
investigate other types of PFASs. More recently, a study con-
ducted in Taiwan with PFASs measured in third-trimester mater-
nal serum samples reported that prenatal perfluoroundecanoic acid
(PFUnDA) concentrations were inversely associated with per-
formance IQ scores in children at 5 y of age, and at further follow-
up at 8 y of age, prenatal exposure to seven types of PFASs
appeared to be associated with reduction of the child’s full-scale,
verbal, and performance IQ scores (Wang et al. 2015). However,
the Taiwanese study included only 120 children, each of whom
was examined at 5 and 8 y old; therefore, replication of these
results in a larger study population is needed. Here, we investi-
gated associations between prenatal exposure to several PFASs
and IQ at 5 y of age in a sample of nearly 1,600 children from the
Danish National Birth Cohort (DNBC).

Methods

Study Participants
The DNBC is a national birth cohort study that originally enrolled
101,041 pregnancies through general practitioners at the first ante-
natal visit (weeks 6 to 12) during 1996–2002 (Olsen et al. 2001).
The DNBC conducted four computer-assisted telephone inter-
views (twice during pregnancy and twice postpartum), and two
prenatal maternal blood samples were collected and stored (one
each in the first and second trimester). For this study, we utilized
additional data collected from the Lifestyle During Pregnancy
Study (LDPS), a subcohort nested within the DNBC and designed
with two-stage sampling with the aim of collecting additional data
to evaluate potential influences of prenatal lifestyle factors, primar-
ily alcohol intake, on neuropsychological outcomes in young chil-
dren. The design and sampling scheme of the LDPS have been
described elsewhere (Kesmodel et al. 2010). Briefly, 3,478 moth-
ers and children from the DNBC were invited to participate in the
LDPS between September 2003 and June 2008 when the children
reached 5 y of age (age range: 60–64mo). Exclusion criteria for the
LDPS were nonsingleton birth, children with impaired hearing or
vision to the extent that the test session could not be performed,
and severe disabilities due to congenital defects. Among those
invited, 1,782 (51%) agreed to participate in a 3-h extensive neuro-
psychological assessment conducted by trained psychologists at
four testing sites located in the four largest cities in Denmark. All
test procedures were standardized, and regular interrater compari-
sons were performed for examiners to minimize potential system-
atic bias from the examiner or the examination site. The final
sample included 1,592 participants with a maternal blood sample
collected at a median of 8 wk of gestation (interquartile range 7 to
10 wk) available for PFAS measurement. A flowchart depicting
the study sample selection can be found in the Supplemental
Material (see Figure S1). A comparison of study characteristics of
those invited and those who participated in the LDPS is also pre-
sented in the SupplementalMaterial (see Table S1).

The research protocol for this study was approved by the
Danish data protection agency and the University of California,
Los Angeles (UCLA) Institutional Review Board.

Child and Maternal IQ Assessment
Child IQ was assessed using the Wechsler Primary and Preschool
Scales of Intelligence–Revised (WPPSI-R) (Wechsler 1990)
administered by 10 psychologists with special training in neuro-
psychological testing and study procedures. All testers were
blinded to alcohol and PFAS exposure. The WPPSI-R is one of
the most widely used measures of intelligence in children

between 3 and 7 y old. The full WPPSI-R consists of five verbal
and five performance (nonverbal) subtests. The verbal subtests
were designed to measure general knowledge, language, and rea-
soning, and the performance subtests were designed to measure
spatial, sequencing, and problem-solving skills. The LDPS used
a shorter version of the WPPSI-R that included three verbal
(arithmetic, information, and vocabulary) and three perform-
ance (block design, geometric design, and object assembly)
subtests. The subtests were selected to make derivation of
verbal IQ, performance IQ, and full-scale IQ scores possible
using standard procedures. Because Danish WPPSI-R norms
were not available at the time of the study, Swedish norms were
used to derive scaled scores (Wechsler 1999). To ensure inter-
rater reliability, each psychologist blindly rescored a number of
subtests in WPPSI-R that had been administered by other psy-
chologists. The interrater agreement for scoring was high (97–
97.5%) (Kesmodel et al. 2010). The final composite IQ scores
were restandardized to a mean of 100 and a standard deviation
(SD) of 15 for statistical analysis.

Maternal IQ was assessed based on two verbal (information
and vocabulary) subtests from the Wechsler Adult Intelligence
Scale (WAIS) (Wechsler 1955) and on the nonverbal Raven’s
Standard Progressive Matrices™ (Raven et al. 1998). The raw
scores from each test were first standardized based on the results
from the full sample and then weighted equally to create a com-
bined score that was restandardized to the full IQ scale with a
mean of 100 and an SD of 15.

PFASMeasurements
Details describing our analytic methods for PFASs have been
described previously (Liew et al. 2014, 2015). Briefly, maternal
blood samples were collected (mean 8.7 wk of gestation) and
sent by mail to Statens Serum Institut in Copenhagen, where they
were separated and stored in freezers at −20�C or −80�C. We
used 0:1ml stored maternal plasma, and the samples were ana-
lyzed at the Department of Environmental Science at Aarhus
University. Solid phase extraction (SPE) was used for sample
extraction and purification. PFAS concentrations were measured
using liquid chromatography–tandem mass spectrometry (LC-
MS/MS). Measurements were performed in a random sequence
by laboratory personnel blinded to exposure and outcome. We
measured 16 different PFASs, but in this study, we focused on
the 7 PFASs with measures above the lower limit of quantitation
(LLOQ) for ≥75% of the samples: PFOS, 100%; PFOA, 100%;
perfluorohexane sulfonate (PFHxS), 99.9%; perfluoroheptane sul-
fonate (PFHpS), 99.4%; perfluorononanoic acid (PFNA), 94.2%;
perfluorodecanoic acid (PFDA), 96.6%; and perfluorooctanesul-
fonic acid (PFOSA), 81.2%. The full panel of LLOQs and the dis-
tributions of all PFASs are presented in Table 2.

Statistical Analysis
We used multivariable linear regression models to estimate the
differences in child IQ scores according to prenatal PFAS expo-
sures. Each of the PFAS compounds was first analyzed as a con-
tinuous variable [as per natural-log (ln) unit increase], and we
also categorized the PFAS values into quartiles, using the lowest
quartile as the reference group. Trend tests were performed using
the median value of the PFAS in each quartile as a continuous
variable. Moreover, we fitted generalized additive models for
PFASs with or without ln-transformation to examine potential
nonlinear relationships. Five degrees of freedom was set as the
upper limit in the smoothing spline, and we compared model fit
and visually inspected plots of the smoothed data. We also dicho-
tomized child IQ scores below 1 SD (scores <85) to indicate low
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IQ, and we used generalized linear models to estimate risk ratios
(RRs) for low IQ following prenatal PFAS exposures.

We adjusted for potential confounders including maternal age
at delivery (continuous), parity (0, 1, >1), maternal IQ (continu-
ous), socioeconomic status (SES; 3 levels derived from the
mother’s and father’s education and occupation), maternal smok-
ing during pregnancy (yes, no), maternal alcohol consumption
during pregnancy (0, 1–4, >5 drinks per week), maternal pre-
pregnancy body mass index (BMI; <18:5, 18.5–24.9, 25.0–29.9,
≥30), child’s sex, and gestational week of blood draw (continu-
ous). Birth year does not predict the outcome scores in our sam-
ple; however, because PFAS exposures may vary by year, we
adjusted for birth year (continuous or categorical) in additional
sensitivity analyses. Additionally, we performed stratified analy-
ses to evaluate potential effect measure modification by child’s
sex (male and female), parity (nulliparous and parous) and mater-
nal SES (high and median/low). Tests of heterogeneity were also
performed by assessing the p-value of the interaction term of
each PFAS and potential modifying factors in the regression
models. To account for PFAS values below the LLOQ when
PFASs were analyzed as continuous variables, we used multiple
imputations including seven PFASs and all abovementioned
covariates in the model (Lubin et al. 2004). We conducted a sen-
sitivity analysis excluding PFAS values that were greater than
three times the value of the 75th percentile to ensure that individ-
uals with extreme exposure values did not disproportionately influ-
ence our results. The blood samples collected in the DNBC were
transported to the biobank by ordinary mail that could subject them
to measurement errors resulting from processing delay (Bach et al.
2015). Therefore, we excluded samples that were processed after
>48 h in another sensitivity analysis.

To assess possible bias due to subject selection for the LDPS,
we first compared the PFAS levels in this sample with those in a
previous DNBC study that randomly sampled live-born singleton
children at birth such that the study was unaffected by loss to
follow-up (Liew et al. 2014). We also compared our PFAS values
to those reported for participants in the U.S. NHANES survey
1999–2000 (Calafat et al. 2007). In addition, we computed inverse
probability weights (IPWs) to account for subject selection in the
LDPS. Sampling of LDPS from all DNBC participants was ran-
dom within alcohol intake categories, and the sampling probabil-
ities were available for adjustment and have been used in previous
studies (Kesmodel et al. 2010, 2012). We estimated the probability
of selective nonparticipation in the LDPS according to factors
measured for all women in the DNBC at baseline. Preterm birth
was negatively related and high maternal SES and organic food
intake during pregnancy were positively related to willingness to
participate (all p-values <0:05).We also included factors that were
weakly associated with LDPS participation such as maternal age,
season of conception, prepregnancy BMI, home size, planned
pregnancy, location of birth, and having missed a telephone inter-
view at baseline (all p-values<0:2). In primary analyses, we pre-
sented the results from weighted regression models that included
the IPW combining the probabilities of sampling and participation.
The 95% confidence intervals (CIs) were computed using robust
variance estimators. Additionally, we compared the findings with
the IPW model that included only the sampling probabilities with-
out adjusting for participation probabilities. Statistical analyses
were performed using SAS 9.4 (SAS Institute Inc.).

Results
Table 1 presents the characteristics of the study sample. Table 2
shows the median and interquartile range (IQR) of maternal PFAS
concentrations during pregnancy in our sample. The concentrations
and distribution of PFASs in the LDPS samples were comparable to

previousDNBC studies aswell as to those reported in representative
samples from the United States during a similar collection period
(see Table S2). As expected, PFAS levelswere higher in nulliparous
women (see Table S3).Mothers with higher prepregnancy BMI and
those who performed more poorly on IQ tests also tended to have
higher PFAS levels in pregnancy.

In linear regressions, we found no associations between an ln-
unit (ng/mL) increase of each of the seven PFASs and child full-
scale or performance IQ scores, and higher prenatal PFNA values
appeared to be associated with higher verbal IQ [adjusted differ-
ence: 2.3 (95% CI: 0.1, 4.5)] (Figure 1). No associations were
observed in sex-stratified analyses (see Figure S2), and none of
the p-values for the sex and PFAS interaction term was <0:05.
We also observed no clear differences in the results when stratify-
ing by parity, except that the positive association between PFNA
and verbal IQ was slightly more apparent among nulliparous
women; however, other types of PFASs were not associated with
IQ scores in both nulliparous and parous women (see Table S4).
No clear differences were observed in the results when we strati-
fied by maternal SES (see Table S5). All p-values for interaction
between PFAS and parity or SES were >0:05.

We found no associations between PFAS quartiles and all
three IQ scales in the total sample (see Table S6). In girls, the
second quartile of PFOA and the third quartile of PFNA were
associated with higher IQ scores compared with the lowest quar-
tile. In linear-trend tests, increasing PFNA and PFDA levels were
also related to higher verbal IQ scores (p-trend 0.02 and 0.04,
respectively). In boys, the second quartile of PFHxS appeared to
be associated with lower IQ, but no dose–response pattern was
observed (Table 3).

Table 1. Characteristics of study participants in the Lifestyle During
Pregnancy Study–Danish National Birth Cohort (LDPS-DNBC) (n=1,592).

Characteristics n or Mean

Percent or
standard
deviation

Maternal age at child birth (years) 30.8 4.4
Maternal IQa 100.1 15
Gestational week of blood drawa 8.7 2.5
Child's sex
Female 761 47.8
Male 831 52.2

Parity
0 801 50.3
1 511 32.1
>1 280 17.6

Socioeconomic status (SES)b

High 1,131 71.0
Medium 412 25.9
Low 43 2.7
Missing 6 0.4

Maternal alcohol consumption during pregnancy
Never 756 47.5
1–4 glasses per week 655 41.1
>4 glasses per week 181 11.4

Maternal smoking during pregnancy
No 1,097 68.9
Yes 495 31.1

Maternal prepregnancy body mass index (BMI)a

<18:5 61 3.8
18.5–24.9 1,093 68.7
25.0–29.9 292 18.3
≥30 116 7.3
Missing 30 1.9

a8 and 135 observations were missing information about maternal IQ and gestational
week of blood draw, respectively.
bSES was created based on self-reported maternal and paternal education and occupation
using three categories (high, medium, and low): higher education (four years beyond
high school) or work in management were classified as high, skilled workers and mid-
dle-range education as medium, unskilled workers and unemployed as low.

Environmental Health Perspectives 067004-3 126(6) June 2018



In addition, we found no association between prenatal PFAS
values and low IQ scores (<85) in the offspring (Table 4). We
did not find evidence to suggest nonlinear associations between
any of the PFASs and IQ scores (all p-values for the spline term
were >0:2). In addition, the results did not markedly change in
an IPW model that only accounted for probabilities reflecting
sampling according to maternal alcohol intake at baseline without
considering factors that may have affected participation in the
LDPS (see Table S7). Finally, our findings did not change in
models further adjusted for birth year (see Table S8) or after
excluding extreme PFAS values or blood samples with process-
ing delays (see Table S9).

Discussion
In summary, we did not find strong evidence to suggest that prena-
tal exposure to PFASs is associated with child IQ measured at 5 y
of age within the exposure range of our samples. Although a few

sex-specific exposure associations were observed, the patterns
were inconsistent and could reflect chance findings given the large
number of statistical tests conducted. However, some of these
observationsmight warrant further investigation.

Intelligence is a lifelong trait that has a strong influence on
educational attainment, career success, mental well-being, adult
morbidity, and life expectancy (Kilgour et al. 2010). Exposure to
environmental neurotoxicants even at relatively low levels can
have a long-lasting impact on intelligence if it occurs during
critical periods of development (Bellinger et al. 1992; Braun
2017; Jacobson and Jacobson 1996; Schwartz 1994). PFASs are
widespread, and in experimental and human studies, exposures
have been shown to interfere with maternal thyroid hormone
function that might be essential for fetal brain development
(Kjeldsen and Bonefeld-Jørgensen 2013; Long et al. 2013;
Wang et al. 2013, 2014; Webster et al. 2014). However, until
now, associations between prenatal PFAS exposures and child
IQ have only been investigated in two small studies (Stein et al.

Table 2. Detection and quantitation limits of perfluoroalkyl substances (PFASs) and plasma concentrations of maternal PFASs in the Lifestyle During
Pregnancy Study–Danish National Birth Cohort (LDPS-DNBC) (n=1,592).

Number Abbreviation Chemical Name

Lower limit
of detection
(ng/mL)

Lower limit
of quantitation

(ng/mL)
Percent >LLOQ
in all samples

PFAS concentrations (ng/mL)

Minimum
25th

Percentile Median
75th

Percentile Maximum

1 PFOS Perfluorooctane sulfonate 0.09 0.28 100% 2.36 21.60 28.10 35.80 127.00
2 PFOA Perfluorooctanoic acid 0.07 0.20 100% 0.61 3.15 4.28 5.49 15.00
3 PFHxS Perfluorohexane sulfonate 0.03 0.08 99.94% <LLOQ 0.76 1.07 1.38 12.80
4 PFNA Perfluorononanoic acid 0.09 0.27 94.29% <LLOQ 0.36 0.46 0.57 2.23
5 PFHpS Perfluoroheptane sulfonate 0.04 0.11 99.37% <LLOQ 0.27 0.37 0.49 2.01
6 PFDA Perfluorodecanoic acid 0.03 0.09 96.55% <LLOQ 0.14 0.17 0.22 0.90
7 PFOSA Perfluorooctanesulfonic acid 0.40 1.19 81.68% <LLOQ 1.38 2.32 4.16 35.90
8 PFHpA Perfluoroheptanoic acid 0.02 0.05 64.64% <LLOQ <LLOQ 0.07 0.12 3.00
9 PFUnA Perfluoroundecanoic acid 0.05 0.15 43.78% <LLOQ <LLOQ <LLOQ 0.19 1.34
10 PFDS Perfluorodecane sulfonate 0.12 0.37 4.33% <LLOQ <LLOQ <LLOQ <LLOQ 7.21
11 PFDoA Perfluorododecanoic acid 0.14 0.41 0.44% <LLOQ <LLOQ <LLOQ <LLOQ 0.85
12 PFTrA Perfluorotridecanoic acid 0.14 0.41 0.06% <LLOQ <LLOQ <LLOQ <LLOQ 0.49
13 PFHxA Perfluorohexanoic acid 0.01 0.03 0.00% <LLOQ <LLOQ <LLOQ <LLOQ <LLOQ
14 PFPeA Perfluoropentanoic acid 0.06 0.19 0.00% <LLOQ <LLOQ <LLOQ <LLOQ <LLOQ
15 PFBS Perfluorobutane sulfonate 0.02 0.07 0.00% <LLOQ <LLOQ <LLOQ <LLOQ <LLOQ
16 PFTeA perfluorotetradecanoic acid 0.14 0.41 0.00% <LLOQ <LLOQ <LLOQ <LLOQ <LLOQ

Note: LLOQ, lower limit of quantitation.
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Figure 1. Adjusted difference in IQ scores for 1,592 children at 5 y old according to prenatal perfluoroalkyl substance (PFAS) levels [per natural-log unit (ng/
mL) increase]. All 1,592 children were analyzed for each PFAS and for outcome scores. Multivariable linear regression modeling was used to estimate the
expected difference in IQ score. Models were adjusted for maternal age at childbirth, parity, child's sex, maternal socioeconomic status, maternal IQ, maternal
smoking during pregnancy, maternal alcohol consumption during pregnancy, maternal prepregnancy body mass index (BMI), and gestational week of blood
draw. Note: PFDA, perfluorodecanoic acid; PFHpS, perfluoroheptane sulfonate; PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoic acid; PFOA, per-
fluorooctanoic acid; PFOS, perfluorooctane sulfonate; PFOSA, perfluorooctanesulfonic acid.
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2013; Wang et al. 2015). The C8 Health Study found PFOA
levels to be associated with improved full-scale IQ (Stein et al.
2013), whereas a Taiwanese cohort study reported that several

PFASs were associated with reduction of child IQ scores
at 5 and 8 y old (Wang et al. 2015). In a large sample nested
within the DNBC, we found no associations or consistent

Table 3.Mean differences in IQ scores in boys and girls at 5 y old according to quartiles of prenatal perfluoroalkyl substance (PFAS) levels.

PFAS quartiles
(unit in ng/mL)

Boys (n=831), difference in scores (95% CI) Girls (n=761), difference in scores (95% CI)

Full Scale IQ Verbal IQ Performance IQ Full Scale IQ Verbal IQ Performance IQ

PFOS
2.36–21.60 Reference Reference Reference Reference Reference Reference
21.61–28.10 −0:9 (−5:1, 3.3) −2:5 (−6:8, 1.9) 0.9 (−3:4, 5.2) 0.3 (−3:4, 4.1) 0.4 (−3:4, 4.2) 0.6 (−3:4, 4.4)
28.11–35.80 1.3 (−3:0, 5.5) −1:2 (−5:5, 3.1) 2.8 (−1:5, 7.1) 0.9 (−2:8, 4.5) 0.8 (−3:6, 5.2) 0.2 (−3:2, 3.6)
≥35:81 −2:6 (−6:9, 1.7) −2:9 (−7:5, 1.7) −1:9 (−6:1, 2.3) 1.8 (−2:1, 5.7) 1.5 (−2:3, 5.2) 1.9 (−2:2, 5.9)
p-Trend 0.30 0.30 0.37 0.35 0.43 0.39
PFOA
0.61–3.15 Reference Reference Reference Reference Reference Reference
3.16–4.28 0.2 (−3:9, 4.3) −0:4 (−4:5, 3.8) 0.2 (−4:1, 4.4) 4.5 (1.1, 8.0) 4.9 (0.9, 8.9) 3.2 (−0:1, 6.6)
4.29–5.49 −1:9 (−6:0, 2.2) −4:2 (−8:6, 0.3) −0:3 (−4:5, 4.0) 1.6 (−2:6, 5.8) −0:1 (−4:1, 4.0) 2.6 (−1:8, 7.0)
≥5:50 0.0 (−4:7, 4.7) −1:3 (−6:0, 3.3) 0.6 (−4:1, 5.3) −0:5 (−4:7, 3.8) −1:0 (−5:4, 3.5) −0:5 (−4:8, 3.8)
p-Trend 0.86 0.40 0.82 0.57 0.30 0.77
PFHxS
<LLOQ–0.76 Reference Reference Reference Reference Reference Reference
0.77–1.07 −4:5 (−8:6, −0:4) −3:9 (−8:1, 0.4) −3:6 (−7:7, 0.6) 2.8 (−0:8, 6.5) 2.1 (−1:8, 5.9) 2.6 (−1:2, 6.4)
1.08–1.38 −2:7 (−7:0, 1.6) −3:2 (−7:3, 0.9) −1:5 (−6:1, 3.1) 2.6 (−1:1, 6.2) 1.6 (−2:0, 5.3) 2.7 (−1:2, 6.6)
≥1:39 −2:0 (−7:0, 2.9) −2:6 (−7:4, 2.1) −0:8 (−5:7, 4.1) −0:7 (−5:1, 3.6) −0:6 (−4:9, 3.7) −1:0 (−5:2, 3.2)
p-Trend 0.58 0.35 0.96 0.69 0.73 0.64
PFNA
<LLOQ–0.36 Reference Reference Reference Reference Reference Reference
0.37–0.46 2.1 (−1:9, 6.2) 2.3 (−2:0, 6.6) 1.2 (−2:8, 5.3) 1.0 (−2:8, 4.8) 0.3 (−3:8, 4.5) 1.0 (−2:6, 4.6)
0.47–0.57 3.2 (−0:7, 7.2) 3.1 (−1:0, 7.2) 2.2 (−2:0, 6.4) 2.8 (−0:5, 6.2) 3.8 (0.4, 7.2) 1.7 (−1:9, 5.2)
≥0:58 −0:5 (−5:2, 4.1) 0.5 (−4:0, 5.0) −1:4 (−6:1, 3.2) 0.7 (−2:8, 4.3) 3.9 (0.2, 7.5) −1:6 (−5:2, 2.0)
p-Trend 0.71 0.96 0.50 0.56 0.02 0.42
PFHpS
<LLOQ–0.27 Reference Reference Reference Reference Reference Reference
0.28–0.37 2.5 (−1:6, 6.6) 0.7 (−3:5, 4.9) 2.9 (−1:3, 7.1) 1.1 (−2:2, 4.4) 1.8 (−2:0, 5.7) 0.6 (−2:7, 3.8)
0.38–0.49 0.8 (−3:3, 5.0) −1:5 (−5:6, 2.6) 2.3 (−2:0, 6.6) 1.7 (−2:3, 5.6) 0.4 (−3:7, 4.4) 1.6 (−2:5, 5.7)
≥0:50 −0:9 (−5:3, 3.4) −2:1 (−6:6, 2.4) −0:3 (−4:6, 4.0) 0.0 (−4:2, 4.2) 1.5 (−2:7, 5.7) −0:9 (−5:0, 3.2)
p-Trend 0.44 0.27 0.65 0.98 0.61 0.68
PFDA
<LLOQ–0.14 Reference Reference Reference Reference Reference Reference
0.15–0.17 2.0 (−2:4, 6.4) 1.2 (−3:1, 5.5) 2.1 (−2:3, 6.5) 0.1 (−3:8, 4.1) −0:6 (−5:1, 3.9) 0.2 (−3:5, 3.9)
0.18–0.22 −0:2 (−4:8, 4.4) 1.0 (−3:5, 5.4) −1:2 (−5:7, 3.3) −0:4 (−3:8, 3.1) 0.7 (−3:0, 4.3) −0:9 (−4:4, 2.6)
≥0:23 −0:2 (−4:0, 3.7) 1.6 (−2:3, 5.4) −1:8 (−5:8, 2.2) 0.9 (−2:6, 4.3) 3.7 (0.2, 7.2) −1:4 (−5:0, 2.1)
p-Trend 0.75 0.45 0.25 0.68 0.04 0.38
PFOSA
<LLOQ–1.38 Reference Reference Reference Reference Reference Reference
1.39–2.32 −0:1 (−4:4, 4.3) −1:0 (−5:3, 3.3) 0.9 (−3:4, 5.2) 0.7 (−2:9, 4.3) −0:3 (−3:9, 3.4) 1.7 (−1:8, 5.3)
2.33–4.16 −0:2 (−4:6, 4.1) −2:6 (−7:4, 2.2) 1.5 (−2:6, 5.6) 0.7 (−2:9, 4.3) −0:3 (−4:3, 3.7) 1.6 (−1:9, 5.1)
≥4:17 −1:0 (−5:6, 3.6) −2:8 (−7:6, 1.9) 0.6 (−3:8, 4.9) −0:8 (−5:0, 3.5) −1:1 (−5:7, 3.5) 0.4 (−3:8, 4.5)
p-Trend 0.65 0.24 0.92 0.63 0.63 0.95

Note: Multivariable linear regression modeling was used to estimate the mean difference in IQ scores. Models were adjusted for maternal age at childbirth, parity, maternal socioeconomic
status, maternal IQ, maternal smoking during pregnancy, maternal alcohol consumption during pregnancy, maternal prepregnancy body mass index (BMI), and gestational week of blood
draw. p-Trend was modeled based on the midpoint of each category. CI, confidence interval; IQ, intelligence quotient; PFDA, perfluorodecanoic acid; PFHpS, perfluoroheptane sulfonate;
PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic acid; PFOS, perfluorooctane sulfonate; PFOSA, perfluorooctanesulfonic acid.

Table 4. Risk ratio for low IQ (scores <85) in children at 5 y of age according to prenatal perfluoroalkyl substance (PFAS) exposures [per natural-log unit
(ng/mL) increase].

Prenatal
PFAS

Boys (n=831), RR and 95% CI Girls (n=761), RR and 95% CI

Low full-scale IQ
(n=157)

Low verbal
IQ (n=122)

Low performance
IQ (n=175)

Low full-scale
IQ (n=80)

Low verbal
IQ (n=81)

Low performance
IQ (n=91)

Per 1 natural-log unit (ng/mL) increase
PFOS 1.1 (0.6, 1.9) 1.1 (0.6, 2.0) 1.2 (0.7, 2.0) 0.6 (0.3, 1.2) 0.6 (0.3, 1.3) 0.8 (0.4, 1.8)
PFOA 1.2 (0.8, 1.7) 1.1 (0.6, 1.8) 1.1 (0.7, 1.6) 0.9 (0.3, 2.4) 0.6 (0.2, 1.6) 1.6 (0.5, 5.0)
PFHxS 1.0 (0.7, 1.5) 1.0 (0.6, 1.6) 0.9 (0.6, 1.4) 1.2 (0.6, 2.1) 1.4 (0.7, 2.6) 1.0 (0.5, 1.9)
PFNA 0.7 (0.5, 1.1) 0.6 (0.4, 1.0) 1.2 (0.7, 2.0) 0.6 (0.4, 1.0) 0.7 (0.4, 1.0) 1.3 (0.7, 2.6)
PFHpS 1.1 (0.7, 1.6) 0.9 (0.6, 1.4) 1.1 (0.7, 1.8) 0.6 (0.3, 1.2) 0.7 (0.4, 1.3) 0.8 (0.4, 1.7)
PFDA 0.9 (0.7, 1.2) 0.8 (0.6, 1.2) 1.1 (0.7, 1.7) 0.7 (0.5, 1.0) 0.7 (0.5, 1.1) 1.1 (0.6, 1.9)
PFOSA 1.0 (0.8, 1.2) 1.0 (0.8, 1.3) 1.0 (0.9, 1.2) 0.9 (0.7, 1.2) 0.9 (0.7, 1.3) 0.9 (0.7, 1.2)

Note: Generalized linear modeling was used to estimate the RR for low IQ. Models were adjusted for maternal age at childbirth, parity, maternal socioeconomic status, maternal IQ,
maternal smoking during pregnancy, maternal alcohol consumption during pregnancy, maternal prepregnancy body mass index (BMI), and gestational week of blood draw. CI, confi-
dence interval; PFDA, perfluorodecanoic acid; PFHpS, perfluoroheptane sulfonate; PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoic acid; PFOA, perfluorooctanoic acid;
PFOS, perfluorooctane sulfonate; PFOSA, perfluorooctanesulfonic acid; RR, risk ratio.
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patterns for prenatal exposure to seven PFASs and child IQ
scores at 5 y of age.

Several key differences in these epidemiological studies may
explain the inconsistency among the findings. First, the exposure
levels and the composition of PFAS exposure mixtures differ
between study populations. The C8 Health Study (Stein et al. 2013)
recruited volunteers from communities highly exposed to industrial
PFOA contamination of drinking water with estimated median lev-
els of prenatal PFOA as high as 43.7 (IQR: 11.7–110.8) ng/mL.
This value is about 10 times higher than the value measured in our
samples from Denmark (median 4.28; IQR: 3:15–5:49 ng=mL) or
the values reported for the study participants in Taiwan (median
2.50; IQR: 1:54–3:35 ng=mL). In the Taiwanese cohort (Wang et al.
2015), several long-chain PFASs such as PFNA, PFDeA, PFUnDA,
and PFDoA were detected frequently and in higher concentrations
than in the DNBC samples. Even though all three studies utilized
Wechsler scales to measure IQ, child IQ scores were evaluated at
different ages (from 5 to 12 y). We may expect some variability in
IQ measures by age, but a recent cohort study in Cincinnati, Ohio,
reported rather high correlations of repeated IQmeasures performed
at 5 and 8 y old [intraclass correlation coefficient (ICC) ranges
0.71–0.80 for performance, verbal, and full-scale IQ] (Braun et al.
2017). Furthermore, covariates included in the regression models
varied between studies; notably, the Taiwanese study did not
account for maternal IQ. We included maternal IQ in the analysis
because maternal IQ scores were moderately and negatively corre-
lated with several PFAS measures in our sample and because it is a
strong predictor of child IQ (Eriksen et al. 2013). Thus, it is possible
that some residual confounding bymaternal behaviors was not fully
accounted for in the Taiwanese study.

Our study has several strengths. First, we included a large sam-
ple with prenatal PFAS measurements in maternal plasma col-
lected in early pregnancy. These compounds have long biological
half-lives, and PFAS levels measured in early gestation have been
shown to reflect the exposure levels throughout the entire preg-
nancy period (Ehresman et al. 2007; Fei et al. 2007). Secondly,
trained psychologists administered the IQ tests blinded to exposure
status. A large number of potential confounders were included in
the analyses. Finally, participants were selected from a well-
designed longitudinal cohort, and we accounted for sampling and
nonparticipation using weighted regression methods to minimize
the possible influence of selection bias on our results. The PFAS
levels found in this LDPS sample are comparable to those in a pre-
vious sample from the DNBC unaffected by selective dropout. We
cannot rule out the possibility of residual bias due to nonparticipa-
tion in the LDPS that is unaccounted for in our IPWmodel, but the
magnitude of such bias is likely to be small (Greene et al. 2011).
Moreover, a previous LPDS paper described associations with
some well-known risk factors such as parental education and
maternal IQ, as well as several birth and postnatal characteristics
and child IQ at 5 y of age, supporting the validity of the outcome
measures (Eriksen et al. 2013).

Limitations of the study include that we had only a one-time
measure of child IQ scores at 5 y of age available for analysis and
that child blood samples are not available in the DNBC to study the
possible influence of postnatal exposures to PFASs. Moreover,
owing to data availability, we were unable to conduct multiple ex-
posure analyses and investigate the effects of PFASs together with
other environmental exposures such as other persistent or nonper-
sistent endocrine disruptors. We expect generalizability of our
study findings to populations with similar characteristics, that is to
say, Nordic or high-income populations with similar exposure
ranges. Whether higher levels of PFASs could disproportionately
affect IQ scores among children from low-SES families should be
evaluated in future studies.

Conclusion
In summary, we did not find consistent associations between pre-
natal PFAS exposures and child IQ at 5 y of age in a large cohort
nested within the DNBC. However, findings from this study
alone may not rule out possible neurodevelopmental effects of
early-life exposures to PFASs. Further study is also needed to
examine offspring IQ scores at older ages. Alternatively, studies
may be able to assess other functional cognitive measures
such as school performance and educational achievement.
Other brain functions related to attention and to other behav-
iors in addition to intelligence also need to be evaluated. In
addition, early childhood exposure to PFASs should be inves-
tigated. Populations affected by higher exposure levels and
potential mixture effects of PFASs should also be considered
in future research.
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